December 8, 2019
Hot Topics:

Emerging Trends in RFID

  • April 8, 2005
  • By Manish Bhuptani and Shahram Moradpour
  • Send Email »
  • More Articles »

Some of the Key Questions with this Emerging Technology

  • What kind of advances in RFID tag design should I expect?
  • Are there any emerging computer hardware or software advancements that will help the deployment of RFID applications?
  • Is item-level tagging hype or reality?
  • What are the important catalysts for the widespread adoption of RFID?
  • What does subcutaneous tagging have to do with RFID adoption in the enterprise?

The etymology of the word trend denotes both movement in a general direction as well as roundabout twists and turns. Early potters could not possibly have predicted the various turns the wheel would take during the 8,500 years after it was first invent-ed. Similarly, it is unlikely that Michael Faraday could have imagined any of today's RFID applications when he discovered electromagnetic induction.

Technology trends, in particular, are not only shaped by technological invention and advancements but by economic, social, and political factors. These add a new dimension of complexity to predicting the ultimate disposition and acceptance of trends.

Keeping all these complexities in mind, we have identified the top emerging trends associated with RFID that are expected to drive its ubiquitous adoption. These trends fall into the following categories: Technological Advancements, Business Process Innovations, Evolving Standards and Legislation, and Consumer Application Innovations.

In this chapter [From the Prentice Hall book RFID Field Guide: Deploying Radio Frequency Identification Systems], we use these categories as anchor to do the following:

  • Take stock of where RFID technology stands today
  • Discuss the recent innovations around RFID
  • Examine key factors that will influence its evolution

Technological Advancements

Technological advancements are the high-octane fuel that powers the continued acceptance and growth of new technologies. These advancements can provide the following advantages:

  • Make existing applications easier to use
  • Offer more functionality
  • Be cheaper to implement
  • Drive deployment costs down

Technological advancements open the door for new applications that were not imaginable or possible before. In the following section, we explore some of the more significant technological advancements that are under development today.

New and Improved Tags

Innovation around the design and manufacture of RFID tags is an ongoing process. Some of the most promising new designs are covered in the following sections.

Alternative Tag Designs

Many factors affect the readable range and accuracy of tags including those that are physical and environmental. Some examples are detection near metal or liquid and extreme weather conditions such as low temperature or high humidity. Besides simply improving on existing technology to overcome these limitations, alternative physics are being employed that can sidestep or leapfrog these limitations.

The majority of the work in the alternative physics area includes developments around chipless tags, introduced in Chapter 3, "Components of RFID Systems." Chipless tags promise to improve upon the physical limitations of radio frequency detection while potentially offering reduced costs due to the absence of integrated circuitry. Chipless tags can be more easily applied to metal and liquid or embedded in items like paper, thereby offering greater flexibility and functionality in connection with their use. One chipless tag technology showing promise in supply chain applications uses Surface Acoustic Wave (SAW) technology. SAW technology involves the propagation of radio frequency acoustic waves on the surface of polished crystals. Other promising chipless technologies that have the potential to revolutionize RFID applications use nanotechnology, genomics, or even chemistry to achieve chipless tagging and unique identification of objects such as paper currency and product labels. CrossID, Inkode, Pharmaseq, RF SAW, and Tapemark are just a few developers and suppliers of chipless tag technologies and solutions.

When it comes to major advancements in IC-based tag design, Smart Active Label (SAL) technologies are gaining momentum in the market. SAL offers enhanced range and accuracy attributes while being less vulnerable to liquid or metal. With packaging similar to passive tags that are used in flexible mediums, such as labels, SAL is essentially a semi-active tag with a power source in the form of a thin, flexible battery. Using SAL labels, tagging and detecting cans of soda and bottles containing liquid can become more practical and economical.
Tag Packaging

Tag packaging plays a significant role in the applicability and practicality of specific uses of RFID. Expect to see tag and antenna packaging designs that will continue to push the envelope of creativity and ingenuity, much as injectable and ingestible tags have done in the past. Chipless tags based on nanotechnology will certainly be at the forefront of such developments.

Another entirely different approach to tag packaging that is very promising is related to printed electronics. This involves the process of "printing", antennae, transistors, or even integrated circuits using conductive ink and standard printing processes. The potential to inexpensively print a tag onto a box or the packaging of an item unlocks a new set of possibilities for the widespread application of RFID in everyday items. Already, a company called Precisia has designed a smart label RFID tag that uses conductive ink-instead of copper-for its antenna.

Sensory Tags

Tags whose packaging integrates them with sensors can monitor, record, and even react to all sorts of environmental conditions. Known as sensory tags, these tag types promote an entirely new set of applications. The major advancements here will be around the coupling or combining of RFID tag technology with sensor technology in very small form factors. Smart Dust is one such combination that offers the functionality of tiny environmental sensors known as MicroElectroMechanical Sensors (MEMS) with active RFID tag-like capabilities. Each such device is expected to be one cubic millimeter in sizei. The potential applications of this technology span a wide area, from monitoring battlefield activities in a military operation to tracking the facial movements of the disabled to control their wheelchairs.

Architecture for the New Network

RFID systems generate mountains of new data that need to be synchronized, filtered, analyzed, managed, and acted upon, often in real-time or near real-time. Each tag is essentially a single computing device, albeit a very simple one, that acts as one node in a network of, eventually, billions or even trillions of such devices. This new network is dramatically different and in many ways more complex than even the Internet, the most complex network ever known. This fact is due primarily to the number of nodes that could exist in the expanded model of a worldwide RFID network, which figures to be several orders of magnitude larger than the number of nodes on the Internet. This simply means that traditional computing architectures and infrastructures will not be adequate to handle the dramatically higher data volumes expected in such a network. Next, we discuss two different approaches under development that address these new requirements, from both the hardware and software viewpoints.

Q: Where will all this RFID data come from?
A: Consider the scenario where a major retail chain will be tagging all its goods in all its stores, at the single item level. The number of tagged items in this scenario can easily reach 10 billion or more. This means that the data identifying the 10 billion items amounts to 120 gigabytes (10 billion X 12 bytes per tag). If these items were read once every 5 minutes somewhere in the supply chain, they would generate nearly 15 terabytes of tracking data every day (120 gigabytes x 12 times per hour x 10 hours per day). That's 15 terabytes of additional data generated by one retail chain every day. Using this formula, 10 major retailers tagging and tracking every item will generate 150 terabytes of data. This is bigger than the estimated 136 terabytes of data from 17 million books in the U.S. Library of Congress (1) . Obviously, a great majority of this RFID data is duplicate and will likely be discarded. However, all this data needs to be processed, examined, and acted upon, even if such action means simply ignoring the data. We use item-level tagging (a more distant scenario) to demonstrate the eventual avalanche of RFID data. However, you can apply a similar formula to calculate the amount of data for a more immediate scenario: case- and pallet-level tagging. Although the volume of data in this case is an order of magnitude smaller, it still represents several orders of magnitude more data than a pre-RFID scenario.

Page 1 of 3

Enterprise Development Update

Don't miss an article. Subscribe to our newsletter below.

Thanks for your registration, follow us on our social networks to keep up-to-date